|
MANUALES, CURSOS Y TUTORIALES ALGORITMOS PARA DESCARGAR GRATIS PROGRAMACION Y DISEÑO PARA PROGRAMADORES Y WEBMASTERS
|
|
Manuales y Cursos de AlgoritmosDirectorio de manuales, tutoriales, documentacion, codigos fuente y programas Algoritmos para descargar y consultar gratis online |
|
Mas contenidos sobre Algoritmos Computacionales: |
|
Documentos disponibles : 5 - Pagina : 1 de 1
|
|
Grafos y Arboles |
|
Enrique Vidal Ruiz |
338 kb
| |
Definiciones. Arboles. Represemtacion de grafos y arboles. Recorridos basicos de arboles.
www.iti.upv.es
|
| |
|
Estructuras de Datos Avanzadas |
|
Afdez |
1170 kb
| |
Pilas. Colas. Listas. Arboles Binarios de Busqueda. Otras Estructuras.
www.lcc.uma.es
|
| |
|
Cache-Oblivious B-Trees |
|
Erik D. Demaine |
186 kb
| |
We present dynamic search-tree data structures that perform well in the setting of a hierarchical memory (including various levels of cache, disk, etc.), but do not depend on the number of memory levels, the block sizes and number of blocks at each level, or the relative speeds of memory access.
theory.lcs.mit.edu
|
| |
|
Playing Games with Algorithms: Algorithmic Combinatorial Game Theory |
|
Erik D. Demaine |
84 kb
| |
Combinatorial games lead to several interesting, clean problems in algorithms and complexity theory, many of which remain open. The purpose of this paper is to provide an overview of the area to encourage further research. In particular, we begin with general background in combinatorial game theory, which analyzes ideal play in perfect-information games.
theory.lcs.mit.edu
|
| |
|
Efficient Algorithms for Petersen's Matching Theorem |
|
Erik D. Demaine |
134 kb
| |
Petersen's theorem is a classic result in matching theory from 1891, stating that every 3-regular bridgeless graph has a perfect matching. Our work explores efficient algorithms for finding perfect matchings in such graphs.
theory.lcs.mit.edu
|
| |
Navegar Contenidos
|
No hay mas contenidos para esta categoria. | | Copyright y Derechos de Autor
Todos los documentos son Copyright y de Propiedad Intelectual de sus propios autores.
|
|
|